苏教版数学教案优质5篇

时间:2024-06-28 15:06:51 分类:工作计划

认真写好教案可以帮助我们更好地评估学生的学习情况,及时调整教学策略和方法,通过书写教案,我们可以更好地安排和调整教学资源的使用,82秘书网小编今天就为您带来了苏教版数学教案优质5篇,相信一定会对你有所帮助。

苏教版数学教案优质5篇

苏教版数学教案篇1

教学目标:

进一步巩固商中间或末尾有0的除法计算,通过具体练习,帮助学生区分各种情况,克服相近内容的互相干扰,能正确估算并计算、验算。

教学重点:

一步巩固商中间或末尾有0的除法计算。

教学过程:

一、基本练习

1、p13.3

出示第一组题,学生独立进行口算。

指名口答。

讨论:上下两题之间有什么相同的地方?口算时有什么区别?

出示第二组题,同桌互相交流进行口算。

讨论:上下两题之间有什么不同的'地方?

小结。

2、p13.1

出示题目,要求学生进行估算,说出商是几位数。

再要求计算。

集体反馈。

小结。

3、计算并验算

5364 3213 8723

学生分组完成,集体评讲。

讨论三题在计算时的不同。

小结。

4、p13.5

引导读懂表格,理解题意。

明确要求谁拍的最快,谁拍得最慢必须要知道每人每分钟拍球的个数。

学生独立完成。

班级交流反馈。

二、课堂练习

1、口答

说出下面各题中商是两位数的,商是三位数的,商中间有0的,商末尾有0的。

5634 3035 4266 9123

2596 8568 7005 2147

2、拓展题

3、填上合适的数

4、油厂把411千克的豆油分装在最多只能装5千克的油壶里,至少需要这样的油壶多少只?

5、在一道没有余数的除法算式中,被除数、除数、商的和是135,商是3,那么被除数=(),除数=()。

三、全课总结

四、作业:p13.2、4

苏教版数学教案篇2

教学目标:

1、使学生通过直观认识长方体和正方体的形状以及特征。

2、通过学生动手拼一拼、摆一摆,认识长方体和正方体的特征,能辨认和区别这两种图形。

教学重点:

认识长方体和正方体的形状以及特征

教学难点:

能辨认和区别

教学方法:

引导探究法

教学准备:

长方形、正方形纸片、小棒

教学过程:

一、复习。

1、出示一些长方体和正方体的实物。让学生指出哪些是长方体,哪些是正方体。

2、在长方体下面的括号里面画“ ”,正方体的下面括号里面“√”。

3、口答。长方体有几个面?正方体有几个面?

二、新授。

1、取出两个正方体,可以拼成什么图形?

2、取出三个正方体,可以拼成什么图形?

3、取出八个正方体,可以拼成什么图形?

教师:通过学生自由拼摆,让学生发现长方体和正方体的区别以及之间的关系。

4、取出四个长方体,如:可以拼成什么图形?(一种拼成长方体,一种拼成正方体)

三、巩固练习。

1、完成教科书p5、1。

2、完成教科书p5第5题。学生独立完成,全班讲评。

3、完成教科书p7第7题。先让学生观察长方体的`上面、前面和右面,并懂得上下、前后以及左右之间的关系,然后进行正确的划线连接。

4、完成教科书p6第五题。

观察:

(1)第一行和第三行有什么关系?

(2)第一行和哪几行有关系?

(3)第二行和哪几行有关系?

(4)你发现了什么?

(5)图中缺了几块?你是怎样得出来的?

5、完成教科书p7第六题。

6、完成教科书p7第8题

根据正方体的平面展开图,让学生想象正方体的六个面上分别标的是哪些数字,教师出示实物演示。

苏教版数学教案篇3

教学目标:

1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点:

使学生理解分数的基本性质。

教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教具准备:

课件,五年级数学学具盒,计算器。

教学过程:

一、呈现材料,发现问题

1、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?

花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。

[评析:创设情境,在学生喜欢的人物分饼的故事中直接导入本课,这样设计可以吸引学生的注意,让学生主动感知,主动去思考,激起学生的.探究兴趣,让学生产生想获知结果的__。内含情感与态度目标:孙悟空,做事认真仔细,机智,勇敢,本事大等。]

师:听到这里,你有什么想法吗?或你有什么话要说吗?

生1:我觉得孙悟空很聪明。

生2:我认为三只小猴分到的饼是一样多的。

生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。

[评析:一般的教师会在这里提出“哪只猴子分得的饼多?”或“你认为猴王这样分公平吗?”这样的问题。但这位教师却提出“听到这里,你有什么想法吗?或你有什么话要说吗?”。这个问题优于前两个问题是因为学生在思考时思路更深、更广。有效的问题有助于摆脱思维的滞涩和定势,促使思维从“前反省状态”进入“后反省状态”,问题的解决带来“顶峰”的体验,从而激励再发现和再创新,有效的问题有时深藏在潜意识或下意识中,“顿悟”由此而生。有效的创设问题可以激发学生创新意识。内含情感与态度目标,体现公平。]

2、师:大家都觉得其实三只小猴分到的饼一样多,那你们有什么方法来证明一下自已的想法,让这三只小猴都心服口服呢?怎么验证?

(1)师引导学生充分利用桌面上学具盒中的学具(其中一条长方形纸片为事先放入,其它都是五年级数学学具盒中原有的),小组合作,共同验证这三个分数的大小?

(2)师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?

组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。

组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。

组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)

组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。

组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。

[评析:书本上的设计是用折纸来验证这三个分数相等,在这里执教者大胆的放大教材,把一系列探究过程放大,把“过程性目标”凸显出来。同时也为学生探究方法的多元化创造了条件,出现了多种验证的方法。还有这样设计把一些知识联系起来,用计算器的目的,是和五年级上学期的一节计算器课联系起来,而且为验证猜想做准备,可以比较分数的大小,节约时间。和单位“1”的概念联系起来,体现出了单位“1”概念中的两层含意。]

3、组织讨论

(1)师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)

板书1/4=2/8=3/12

(2)你能从图上找到另一组相等的分数吗?

板书3/4=6/8=9/12

[评析:书本例1为比较38和9/12的大小。执教者在创设情景时选择的分数是有目地的]

4、引入新课

师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。

生:分数的分子和分母变化了,分数的大小不变。

师:我们今天就来共同研究这个变化的规律。

5、引导猜测

师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。

生1:分子和分母都乘以一个相同的数,分数的大小不变。

生2:分子和分母都除以一个相同的数,分数的大小不变。

生3:分子和分母都加上一个相同的数,分数的大小不变。

生4:分子和分母都减去一个相同的数,分数的大小不变。

师:根据学生回答板书

[评析:这样设计注意了知识背景的丰富性,拓宽了“分数基本性质”的研究背景。在教学中,学生充分观察学习材料,发现问题后,教师引导学生提出猜测。学生的实际猜想可能会出现观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据学生已有的知识经验提出的,能够自已提出问题,已经向探索迈出了可喜的一步。教师留给了学生足够的思空间,让学生充分展现心中的疑惑,呈现了四种不同的假说。如此一来,学生不但是进入到了知识的学习过程中,更是进入到了知识的研究过程中。“分数基本性质”的研究背景从知识层面上来看已经拓宽了,从以前的只局限于“分子和分母同时乘(或除以)一个相同的数,分数的大小不变”拓宽到对““分子和分母同时乘(或除以、或加上、或减去)一个相同的数,分数的大小不变”的研究,有利于学生更为充分地经历“性质”形成的过程,全面地理解和认识“分数的基本性质”,同时还为沟通加、减、乘、除四种情况在分数的大小不变过程中的区别和联系奠定了基础。]

二、活动研究,探究规律。

1、引导研究,感知规律

师:猜测是不一定正确的,需要通过验证才能知道猜测是不是有道理,规律是否存在。我们需要对以上的猜测进行验证。你们准备如何进行验证?

生:举一些例子来验证

师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?

生:分子和分母都乘以一个相同的数,分数的大小不变。

师:好,我们就选这个,试试看。

学生以小组为单位进行尝试验证,教师作适当指导。

反馈:根据学生回答板书

1/2=0.5

1×2/2×2=2/4=0.5

1×3/2×3=3/6=0.5

师:看了这些小组的举例验证,能说明这个猜测有道理吗?

有什么要补充的吗?

(学生没有答出0除外)

师:谁能写出几个与1/3相等的分数。比一比谁写的多。

生回答,师板书1/3=2/6=3/9……

师:这样写得完吗?

生:不能

师:分子和分母是不是可以乘以所有的数。

生:0要除外。

师:为什么0要除外呢?

生:0不能做除数,也不能做分母。

[评析:学生在巩固知识的过程中得出结论:这样是永远也写不完的。这时,教师适时点拨,将学生的思维引向更深层次,从而自然得出“0除外”的结论。这样形成的记忆是深刻的。]

2、自主研究,理解规律

师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。

学生自由选择,教师适当进行调配。

师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。

学生小组合作进行研究,教师作适当指导。反馈交流

小结

师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(0除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。

出示课题:分数的基本性质

师:你们认为性质中哪几个字是关键字。

生:“都”,“相同的数”,“0除外”

生齐读投影上的分数的基本性质

[评析:这样的设计使学生对四个“假说”的验证过程认知比较充分。这不仅为学生准确理解和把握“分数的基本性质”提供了丰富的感性材料,同时,也为学生体验数学学习的过程创造了条件。教师在该环节的处理上出于对学生实际的考虑,安排了两个层次。第一层次选择“分子和分母都乘以一个相同的数,分数的大小不变。”这一猜测进行验证,一是让学生充分体验一次验证的过程,认识到过程中的注意点,二是有利于教师下一步的调控和指导。正是有了这样的引导,学生在第二层次的独立验证活动中,才能够更多地关注数学学习内在的东西,排除了一些不必要的干扰。学生探究的过程比较清晰,对学习方法的体验也比较深刻、到位。由于这样的设计,使整节课的重心从关注知识的传授转移到关注学习方法的指导上。更重要的是这样的设计体现出了猜测——验证——结论的思维模式。]

3、沟通说明,揭示联系。

师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。

生:商不变性质

出示商不变性质

师:分数的基本性质与商不变性质有什么相通的地方吗?

生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。

师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。

[评析:引导学生沟通分数的基本性质与商不变性质之间的联系,可以使学生体会到知识与知识之间有时是可以联系起来的。这样的设计有效的培养了学生的比较、分析、综合的能力。]

出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)

师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。

生:分数的基本性质。

[评析:数学中的概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。

例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要破译它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。

这样设计可以使学生在回答什么是分数的基本性质时,先想到动画,再用语言表达出内容。同时也可以使学生体会到运用这样的思维方式为以后遇到难以解决的问题是可以提供一定的帮助的。内容情感与态度目标:做事或解题时不能粗心大意。]

师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?

三、应用性质,解决问题。

1、出示例2

思考:要把1/3和16/24分别化成分母是6而大小不变的分数,分子、分母怎么变化?变化的依据是什么?板书

2、多层练习,巩固深化

(1)书本试一试

游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)

[评析:练习设计层次安排合理、形式多样、由浅入深。采用游戏的形式,抓住学生好胜的心理,在不知不觉中完成了练习,节约了练习的时间。体现了趣味性、生动性、开放性。既巩固了新知,又发展了思维。]

四、课堂总结

师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?

生1、我们是用举例的方法学的。

生2、我们是用验证的方法学的。

生3、我们是通过比较发现了规律。

师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。

师:我这里还为大家准备了一个故事。(哥德__猜想加陈景润的故事)

师:你听了有什么启发吗?课后同学们可以互相讨论一下。

[评析:让学生回忆这节课的学习历程和发现的一些规律,这样做更能体现“过程”。让学生带着问题下课,把对数学研究的兴趣延伸至课外,鼓励学生大胆创新。]

苏教版数学教案篇4

教学内容

课本第5—6页例4、例5,课本第6页“课堂活动”。

教学目标

1、学会用线段图表示数量关系,分析具体的实际问题。

2、在解决问题的过程中使学生进一步体会小括号的作用,能正确计算带有小括号的两步混合运算。

3、提高学生应用所学知识解决实际问题的能力。

教学重难点

重点:学会用线段图表示数量关系,分析具体的实际问题。

难点:提高学生应用所学知识解决实际问题的能力。

教学准备

教学挂图

教学过程

一、复习引入

出示下列习题:

12÷4+25400-20×16

213÷(102-99)(120-63)×45

先指名学生口答运算顺序,然后让学生独立计算,最后进行全班订正。

二、探索新知

1、教学例4。

出示例4教学情境图,引导学生认真观察。

(1)、理解图示内容。

问:从图上你能获得哪些些信息?问题是什么?

指名回答,引导学生找出图中所提供的信息,明确所提的问题:啄木鸟每天吃多少只害虫?

(2)自主探索

教师提示学生试着用线段图来表示图中的'数量关系分析和解决这个问题。

(3)合作交流

①指名板演,并说说自己的思考过程。

②教师引导分析,画图讲解,让学生明白题中的数量关系。

③探讨:为何表示“45只”的那一段要用虚线表示?

(4)即时练习。

指导完成课本第5页“议一议”

全班交流时,重点引导学生讨论:为什么表示“多45只”的那一段要用实线表示。

2、教学例5

出示例5教学情境图,引导学生认真观察。

(1)理解图示内容。

问:从图你能获得哪些信息?

(2)自主探索,并在小组内交流自己的想法。

(3)合作交流。

交流时重点让学生明白,要求小青有多少张邮票,必须先知道什么?

三、巩固练习。

引导完成第6页课堂活动中的习题。

四、全课小结。

问:通过这节课的学习,你学会了什么?

五、作业布置。

练习一第8页第5题。

苏教版数学教案篇5

一、导入新课。

1、谈话:大家知道我们学校是一个棋类特色学校,下个月马上又要进行各棋类比赛了,老师打算再(出示一副象棋12元,一副围棋15元)购买3副中国象棋和4副围棋,你能算一算,老师一共要付多少元吗?

2、学生理解题意后独立列式计算。

3、指名交流,并说说每一步的含义。

可能会有两种情况:

(1)分步计算:12×3=36(元)

15×4=60(元)

36+60=96(元)

(2)综合算式:12×3+15×4

二、学习新课。

(一)学习例题。

1、谈话:两位同学用不同的列式方法解决了这个问题,这个综合算式你同意吗?谁再来说说这个综合算式表示的含义?

(指名交流)

2、提问:比较一下,12×3+15×4和我们以前学过的混合运算的算式有什么不同?

(学生交流)

3、谈话:今天我们就要一起来学习“含有三步运算的混合运算”(板书:混合运算)那么这个混合运算应该怎样计算呢?你能自己尝试一下吗?

(1)学生尝试独立计算,同桌交流自己的想法。

(2)指名交流。先算什么,再算什么,为什么?说清自己是怎么想的。

4、 小结:有加法和乘法的三步混合运算要先算乘法,这样的两个乘法可以同时计算。

找出学过的平面图形中互相平行的线各有几组。学生独立思考后,先在小组内交流,再在班内交流。

(完整板书:12×3+15×4

=36+60

=96(元)

答:她一共要付96元。)

(二)练习。

1、出示:240÷6-2×17

学生独立完成,指名板演。

2、指名说说运算顺序,自己是怎么想的。

全班校对。

3、提问:这两个混合运算有什么相同和不同的地方?

(学生交流。

不同点:三个运算符号不同。

相同点:都是先算两边,再算中间加减法,计算原则是先乘除后加减。)

(三)完成“试一试”。

1、出示:150+120÷6×5

谈话:看一看这个综合算式中有哪些运算?你觉得这个算式的运算顺序应该是怎样的?

2、学生独立思考后在小组里交流。

3、学生独立计算,指名不同算法的两个学生板演。

4、指名说说自己计算时是怎么想的,全班校对,及时纠正错误。

(四)小结。

1、提问:今天我们学习了在算式中含有加、减、乘、除的三步混合运算。应该按怎么样的顺序进行计算?

(学生交流)

2、 小结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。(板书:不含括号的)

三、巩固练习,完成“想想做做”。

1、第1题。

(1)学生独立完成,指名板演。

(2)指名交流,说说运算顺序。

全班校对。

2、第2题。

(1)学生审题后独立改错。

(2)指名交流,说说错在哪里,分析错误原因。全班校对。

3、第3题。

(1)学生一组一组进行计算,比较上下两题,思考有什么发现?

(2)指名汇报,并交流自己的发现。初步感受乘法分配律。

4、第5题。

(1)学生审题后理解题意。

(2)鼓励学生独立列综合算式解决问题,有困难的同学可先分步计算,再根据分步计算的结果列综合算式。

(3)同桌交流自己的想法,说说每一步求的是什么。

(4)指名交流,并说说自己的思考过程。

分析:美术组:18人书法组:18人的2倍合唱组:比两个组多6人

四、课堂小结。

1、谈话:今天我们学习了什么内容,你有什么收获?你还能提出哪些问题?你觉得在计算的时候哪些地方要值得注意?

2、布置作业:书本p36的第4、6题。

《苏教版数学教案优质5篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭