3的倍数的特征教学反思8篇
学会写教学反思,老师们的教学水平一定都得到提升,一份教学反思是能看出一个教师的综合能力的,所以我们一定要想在好了再下笔,以下是82秘书网小编精心为您推荐的3的倍数的特征教学反思8篇,供大家参考。
3的倍数的特征教学反思篇1
每周四都是学校里听蹲班课的时间,尽管刚刚结束中秋假期回来,但是仍旧没有中断听课,由于这次蹲的是我的另一个班,因此在假期里就查阅了一些相关知识。
关于蹲班课,我的态度是无所谓,不想尽很大的力去准备,倒不是因为不重视,相反,我更想呈现出日常上课的状态,这样才能暴露问题,评课时大家积极发表建议,在以后的上课过程中才能落实下去。
今天讲的是2,5的倍数的特征,其实我在课下做过调查,很多同学都能够准确说出2的倍数的个位是0、2、4、6、8,5的倍数的个位的0、5。那么这节课还需要让学生知道什么呢?后来我把重点放在“为什么2、5的倍数的特征只需要关注个位就可以了?”这也是在为后面学习3的倍数的特征做铺垫。
整节课上下来,听课的老师们给出了很多建议,总结如下:
1.从课堂内容来讲,可以引导学生积累推理能力的经验与策略,例如在教学过程中可以从概念、数数、举例、数的组成等方面来进行对于数字5的倍数特征的验证,然后把2的倍数特征的验证放手让学生去做;
2.将课后习题进行归类,可以在预习时让学生尝试分类;
3.在课上突出落笔,可以由学生去讲台上板演,然后让做的快的同学上去批改,如果有不会做的同学可以找台下的同学“搬救兵”(救兵小声讲明白了,还由原来的同学完成);
4.增加课堂的趣味性,由于双减政策的实施,可以让学有余力的同学尝试编写一些有趣的问题,讲给同学们听;老师也要把手中的辅助材料用好,不是一味地给学生做题,可以把一些有价值的好题放到课堂上完成。
5.增加课堂上的生生互动,小组化学习还有所欠缺,教师的课堂语言还需要再精简。
6.在讲解习题的时候可以让学生以“开火车”的形式,只说思路,不要特殊化学困生,保护高年级学生的自信心。
目前存在的困惑:如何才能在课堂上梳理出推理策略的多样化:概念、数数、举例、数的组成……
3的倍数的特征教学反思篇2
2、5的倍数特征有共同之处,既都要关注个位上的数字。我在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,我完全放手,给学生以充分的.时间和空间,让他们在观察、探索中体验成功的喜悦。
在教学既是2又是5的倍数的特征时,我没有让学生通过做课本上的习题总结结论,而是通过让学生说自己的学号,谁是2的倍数,谁是5的倍数,然后自然的追问一句:“为什么有的同学举了两次手?”全体学生幡然醒悟,原来这几个同学的学号既是2,又是5的倍数,很自然的找到了既是2又是5的倍数的特征,我感觉这一个环节的设计非常自然,贴近学生实际。这是我认为比较成功的地方。
不足之处:
1、.营造民主、宽松的学习氛围不够。
课堂气氛在很大程度上影响着学生学习过程中创造性的发挥。这节课一开始教师营造气氛不很到位。后来气氛有所缓和。
2、.总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。
3.本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。
3的倍数的特征教学反思篇3
【初次实践】
课始,让学生任意报数,师生比赛谁先判断出这个数是不是3的倍数,正当我沉浸在游戏的情境之中,几个“不识时务者”打乱了课前的预想。“老师,我知道其中的秘密,只要把各个数位上的数加起来,看看是不是3的倍数就行了!”“对!在数学书上就有这句话。”……又有几个学生偷偷地打开了数学书。“怎么办?”谜底都被学生揭开了。面对这一生成,我没有死守教案,而是果断地调整了预设,变“探索”为“验证”,将结论板书在黑板上,让学生理解这句话的意思,然后组织学生将百数表中3的倍数圈出来,验证是不是具有这样的特征,最后进行一系列巩固练习……
[反思]
课堂上经常会出现类似上述案例中的“超前行为”,即有些学生提前把要探究的新知识和盘托出。我们的习惯做法就是变“探索”为“验证”,当然有些知识的教学采用这种方式是有效的,然而本课中“验证”的过程真能取代“探究发现”的过程吗?仅仅举几个例子试一试,验证方法单一,思维含量低,学生充其量只能算是执行操作命令的“计算器”,又能获得哪些有益的发展?如果经常进行这样的教学,还容易使学生形成浮躁浅薄,不求甚解,甚至只要结论的不良学习风气。怎么办,置之不理吗?如果这样,不仅没有尊重学生已有的知识经验,而且在已经揭开“谜底”的情况下,再试图引导学生进行猜想、实验、发现,体验遭受挫折后取得成功的那种激动,也只能是一种奢望。那么又该如何激发学生探究的热情,促使学生进行深入探究呢?
【再次实践】
(与第一次教学情况基本相同,有些学生能够正确地判断一个数是不是3的倍数,这时一些学生却依然感到困惑,我设法将这一困惑激发出来。)
师:同学们真能干,这么快就知道了3的倍数的特征,上节课我们学习了2、5的倍数的`特征只和什么有关?
生:只和一个数的个位有关。
师:与今天学习的知识比较一下,你有什么疑问吗?
生1:为什么判断一个数是不是3的倍数只看个位不行?
生2:为什么判断一个数是不是2、5的倍数只看个位,而判断是不是3的倍数要看各位上数的和?
……
师:同学们思考问题确实比较深入,提出了非常有研究价值的问题。那我们先来研究一下2、5的倍数为什么只和它的个位有关。
(学生尝试探索,教师适时引导学生从简单数开始研究,借助小棒或其他方法进行解释。)
生1:我在摆小棒时发现,十位上摆几就是几十,它肯定是2、5的倍数,因此只要看个位摆几就可以了。
生2:其实不用摆小棒也可以,我们组发现每个数都可以拆成一个整十数加个位数,整十数当然都是2、5的倍数,所以这个数的个位是几就决定了它是否是2、5的倍数。
师:同学们想到用“拆数”的方法来研究,是个好办法。
生3:是否是3的倍数只看个位就不行了。比如13,虽然个位上是3的倍数,但10却不是3的倍数;12虽然个位不是3的倍数,但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的数和个位上的数合起来是不是3的倍数就行了。
生4:我也是这样想的,我还发现十位上余下的数正好和十位上的数字一样。
生5:(面带困惑)起初,我也是这样想的,可是在试三十几、四十几时就不行了。余下的数和十位上的数不一样了,比如40除以3只余1,余下的数就和十位数字不同。
生(部分):对。
生4:其实40不要拆成39和1,你拆成36和4,余下的数不就和十位数字相同了吗?
生6:也就是说整十数都可以拆成十位上的数字和一个3的倍数的数。这样只要看十位上的数和个位上的和是不是3的倍数就可以了。
师:同学们确实很厉害!那三位数、四位数是不是也有这样的规律呢?
学生用“拆数”的方法继续研究三、四位数,发现和两位数一样,只不过千位、百位上余下的数要依次加到下一位上进行研究。3的倍数的特征在学生头脑中越来越清晰。
师:同学们通过自己的探索,你们不仅发现了3的倍数的特征,还弄清了为什么有这样的特征。现在你还有哪些新的探索想法呢?
生1:我想知道4的倍数有什么特征?
生2:我知道,应该只要看末两位就行了,因为整百、整千数一定都是4的倍数。
师:你能把学到的方法及时应用,非常棒!
生3:7或9的倍数有什么特征呢?
……
师:同学们又提出了一些新的、非常有价值的问题,课后可以继续进行探索。
[反思]
1. 找准知识间的冲突,激发探究的愿望。学生刚刚学习了2、5的倍数的特征,知道只要看一个数的个位,因此在学习3的倍数的特征时,自然会把“看个位”这一方法迁移过来。而实际上,3的倍数的特征,却要把各个位上的数加起来研究。于是新旧知识之间的矛盾冲突使学生产生了困惑,“为什么2或5的倍数只看个位?”“为什么3的倍数要把各个位上的数加起来研究?”……学生急于想了解这些为什么,便会自觉地进入到自主探究的状态之中。知识不是孤立的,新旧知识有时会存在矛盾冲突,教师如能找准知识间的冲突并巧妙激发出来,就能激起学生探究的愿望。这样不仅有利于学生对新知的掌握,有效地将新知纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2. 激活学习中的困惑,让探究走向深入。创造和发现往往是由惊讶和困惑开始。对比两次教学,第一次教学由于忽视了学习中的困惑,学生对于3的倍数的特征理解并不透彻,探索的体验也并不深刻。第二次教学留给学生质疑的时空,巧设冲突,让学生进行新旧知识的对比,将困惑激发出来,通过学生间相互启发、相互质疑,对问题的思考渐渐完整而清晰。学生不但经历由困惑到明了的过程,而且思维不断走向深入,获得了更有价值的发现,探究能力也得到切实提高。学生在学习中难免会产生困惑,这种困惑有时是学生希望理解更全面、更深刻的表现。面对这些有价值的思考,我们要有敏锐的洞察力,采取恰当的方法将其激活,促使探究活动走向深入,让学生获得更大的发展。当然,学生在学习中可能产生怎样的困惑,面对这一困惑又该如何恰当引导,尚需要教师课前精心预设。
3. 沟通知识间的联系,让学生不断探究。显然,2、5的倍数的特征与3的倍数的特征是相互联系的,其研究方法是相通的(都可以通过“拆数”进行观察),特征的本质也是相同的。这种研究方法和特征本质的及时沟通,激发了学生继续研究4、7、9……的倍数的特征的好奇心,促使学生不断探究,将学习由课内延伸到课外,并在探究过程中建构起对数的倍数特征的整体认识,感悟数学其实就是以一驭万,以简驭繁。课堂不是句号,学生的发展始终是教学的落脚点。我们的教学绝不能仅仅局限于学生对于一堂课知识的掌握,而应着眼于学生对于解决问题方法的感悟,获得可持续发展的动力。
3的倍数的特征教学反思篇4
1.以学生原有认知为基础,激发学生的探究欲望。教师利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的.倍数的特征”迁移到解决“3的倍数特征”的问题,产生认知冲突,萌发疑问,激发强烈的探究欲望。本案例中,学生很快进入问题情境,猜测、否定、反思、观察、讨论,大部分学生渐渐进入了探究者的角色。
2.以问题为中心组织学生展开探究活动。在上面案例中,教师注意突出学生的主体地位,教师依据学生年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,并不断组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律、得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
3的倍数的特征教学反思篇5
3的倍数是在学习了2、5的倍数特征的基础上进行学习的,我让孩子们提前进行了预习,通过授课发现孩子们的预习没有达到预想的效果。学生在汇报时能够圈出3的倍数,而且非常准确,在汇报3的倍数的方法时,他们大多数是借助结论得出来的,没有体现出他们研究的过程。因此,我在课上进行了及时的指导,把孩子们需要汇报的过程进行了详细的说明。孩子们很快理解了我的意思,立刻进行了新的分工。第一位同学汇报了他们找到的3的倍数,并介绍的找3的倍数的方法即,用这个数除以3,看商是不是整数而且没有余数。接下来汇报百数表中前十个3的倍数,让大家观察个位上的数字,通过观察发现3的`倍数个位上是0-9的任意一个数,不能像2、5的倍数特征只看个位的特殊数就行了。因此只看个位不能确定是不是3的倍数。
由于孩子们有了提前的预习,孩子们心目中已经有了结论。因此在这个时候孩子们思考的深度不够,没有理解教材的意图。教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。
第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的倍数。让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。
第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。这个结论只是通过观察百数表得出的关于两位数的结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。验证的结果是肯定的,因此得出的结论适合所有的数。
到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练习来也显得得心应手。孩子体验了结论得出的过程,每一个环节的设计都有他的意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。
3的倍数的特征教学反思篇6
2、5、3的倍数特征是分为两节课完成的,上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,2、5的倍数的特征这节课,概念比较多,学生很容易混淆。怎样才能把抽象的概念转化为形象直观的知识让学生们接受呢?
一、互动、质疑,激发学生的探究兴趣。
好的开始等于成功了一半。课伊始,我便说:“老师不用计算,就能很快判断一个数是不是2或5的倍数,你们相信吗?”学生自然不相信,争先恐后地来考老师,结果不得而知。几轮过后,看到他们还是不服气的样子,我故作神秘说:“其实,是老师知道一个秘诀。你们想知道是什么吗?”由此引出课题。这样大大的调动了学生学习的积极性,激发了其探究的欲望。
二、鼓励学生独立思考,经历猜测验证的过程。
数学学习过程中充满了观察、实验、推断等探索性与挑战性活动。由于5的倍数的特征比较容易发现,我便把它调到2的倍数的特征前面来进行教学。首先让学生独立写出100以内5的倍数,独立观察,看看你有什么发现?学生很容易发现“个位上是0或5的数是5的倍数。”而这只是猜测,结论还需要进一步的验证。我们不能满足于学生能够得到结论就够了,而应该抱着科学严谨的态度,引导学生认识到这个结论仅仅适用于1—100这个小范围。是不是在所有不等于0的自然数中都适用呢?还需要研究。在老师的引导下,学生开始认识到还要继续拓展范围,研究大于100的自然数中所有5的.倍数是不是也是个位上的数字是5或0。在这一过程中,学生感受到了科学严谨的态度,知道了在进行一项数目巨大的研究过程中,可以从小范围入手,得到一定的猜想,然后逐渐扩范围大,最后得出科学的结论。这样,当下节课研究3的倍数的特征时,学生就会大胆猜想,并有方法来验证自己的猜想了。
三、小组合作,发挥团体的作用
动手实践、合作交流是学生学习数学的重要方式。与5的倍数特征相比较,2的倍数特征稍显困难,所以我组织学生利用小组合作的方式,根据探究5的倍数的特征的思路,小组合作探究2的倍数的特征。经过这样的合作讨论,大多数小组能够得到正确或接近正确的答案。突出了学生的主体地位,让他们在充分的探索活动中充分发现规律、举例验证、总结归纳。
2、5、3的倍数的特征教学反思四:
课上完了,整体来说感觉良好。学生的主体作用在这节课中得到了充分的发挥,积极的思维、热烈的气氛等均给人以很大的感染,仔细分析,我认为这节课课的成功得益于以下几方面:
1.2.3.5倍数的特征,它们在知识体系中是一个整体,而在特征和判断方法上有各自不同,这使得学生的学习过程始终处在“产生冲突解决冲突”的过程中,为学生的积极探索提供了较大的空间,也为每个学生在不同水平上参与学习提供了可能。例如,在探索能被3整除的数的特征时,有的学生提出“个位上是3的倍数”有的学生提出“某一位上的数是3的倍数”;而水平较高的学生提出:“各个数位上的数字之和是3的倍数”。在这样一个探索过程中学生的主动性和创造性得到了发挥。这是我认为比较成功的地方。
3的倍数的特征教学反思篇7
?3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。
3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。
1、瞄准目标,把握关键
在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、经历过程,授之以渔
猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。
3、追求本真,知其所以然
本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的.方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。
3的倍数的特征教学反思篇8
?3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的.倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。
但上课的过程中,学生并没有按照我想的思路去进行,一个学生在我没有预想的前提下说出了3的倍数的特征,所以我准备让四人小组去合作交流发现3的倍数的特征也没有进行。只是让学生两人去再说一说刚才那个学生的发现,加以理解,巩固。
这节课结束后,我感觉以下方面做得不好。
1、备课不充分。自己在备课时没有好好的去备学生,没有做好多方面的预设;
2、在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。
